Wei Zip
Download - https://geags.com/2tMlaX
Tip: Winaero Twеaker is essential software for every Windows 10, Windows 8 and Windows 7 user. It allows you to customize the appearance and behavior of the operating system in a flexible way.Try Winaero Twеaker now!
As you might be knowing, the Windows Experience Index (WEI) was removed from Windows 8.1. Microsoft left the WEI engine in the OS, but the UI was deleted from This PC/Computer properties. Recently, our good friends at IntoWindows reviewed the ChrisPC WEI tool. I looked at this tool but was disappointed that it didn't show the actual tests and assessments being done accurately. So I decided to code a better alternative myself with a nice looking, familiar UI. With WPF, it was a quite simple task. So, here is my new freeware portable app, Winaero WEI Tool:Latest version is 1.0.0.2, see the change log below.It brings back the genuine Windows Experience Index and features the following abilities:
There is an unique ZIP code for District Wei, Xingtai - Hebei in China. Below you can see the map of all zone covered by this ZIP Code. It means that if the address you are looking for is inside this area, this is your Post Code.
These twisted rolls, called ma hua in Mandarin, are sprinkled with brown sugar and have a crunchy texture. These twists are not overly sweet making them a perfect (and addicting) snack to munch on anytime of day!
The homeodomain-leucine zipper (HD-Zip) gene family is one of the plant-specific transcription factor families, involved in plant development, growth, and in the response to diverse stresses. However, comprehensive analysis of the HD-Zip genes, especially those involved in response to drought and salinity stresses is lacking in sesame (Sesamum indicum L.), an important oil crop in tropical and subtropical areas.
In this study, 45 HD-Zip genes were identified in sesame, and denominated as SiHDZ01-SiHDZ45. Members of SiHDZ family were classified into four groups (HD-Zip I-IV) based on the phylogenetic relationship of Arabidopsis HD-Zip proteins, which was further supported by the analysis of their conserved motifs and gene structures. Expression analyses of SiHDZ genes based on transcriptome data showed that the expression patterns of these genes were varied in different tissues. Additionally, we showed that at least 75% of the SiHDZ genes were differentially expressed in responses to drought and salinity treatments, and highlighted the important role of HD-Zip I and II genes in stress responses in sesame.
This study provides important information for functional characterization of stress-responsive HD-Zip genes and may contribute to the better understanding of the molecular basis of stress tolerance in sesame.
Transcription factors (TFs) play a vital role in regulatory networks that link between the developmental program and response of genes to endogenous and environmental signals. TFs directly bind to the promoters of target genes in a sequence-specific manner to activate or repress the expression of their target genes [1]. Homeobox proteins are a large superfamily of transcription factors (TFs) found in invertebrates, vertebrates, fungi, and plants, which contain a highly conserved DNA-binding domain known as the homeodomain (HD) [2]. The HD is 60 amino acids in length and adopts a structure of three α-helices connected by a loop and a turn [2,3,4]. The HD binds DNA as a monomer with high affinity through the interactions established by helix III (called the recognition helix) with the major groove of the target DNA while the disordered N-terminal arm, located upstream the first helix, interacts with the DNA minor groove [5]. Homeodomain proteins have been classified into different families according to the distinguishing features, such as HD location, association with other domains, their size and gene structures. Based on thorough analyses of homeodomain proteins from flowering plants, moss, Selaginella, unicellular green algae, and red algae, Mukherjee et al. [6] classified the plant HD-containing proteins into 14 families, including HD-Zip (homeodomain associated to a leucine zipper), WOX (Wuschel related homeobox) and KNOX (Knotted related homeobox).
There are 48 and 49 HD-ZIP genes in Arabidopsis thaliana and rice (Oryza sativa L.), respectively [6, 14, 15]. Through genome-wide analysis, members of HD-Zip gene family have been also identified in many other plant species, including grape (Vitis vinifera) [16], maize (Zea mays) [17], soybean (Glycine max) [18, 19], cassava (Manihot esculenta) [20], wheat (Triticum aestivum) [21], tea plant (Camellia sinensis) [22], and potato (Solanum tuberosum) [23]. HD-Zip proteins are known to participate in transcriptional regulation of various biological processes, and members of the different subfamilies have specific roles [2, 24, 25]. HD-Zip I proteins were found to be implicated in the regulation of abiotic stress responses, light and hormone (ABA, auxin and ethylene) signal transduction, and plant growth and development [2, 24, 26]. AtHB7 (Arabidopsis thaliana HOMEOBOX 7) and AtHB12 (Arabidopsis thaliana HOMEOBOX 12) from Arabidopsis HD-Zip I group participate in ABA sensing and transduction, playing a key role in drought and salt responses [27, 28]. MtHB1 (MEDICAGO TRUNCATULA HOMEOBOX 1), a HD-Zip I protein from M. truncatula, regulates root architecture under adverse environmental stresses by repressing LBD1 (LOB-BINDING DOMAIN 1) involving crosstalk between auxin and ABA signaling pathways [29]. In the case of HD-Zip II proteins, they are mainly involved in development, shade avoidance and abiotic stress responses [30,31,32]. For example, members of the HD-Zip II family, including AtHB2 (Arabidopsis thaliana HOMEOBOX 2), AtHB4 (Arabidopsis thaliana HOMEOBOX 4), and HAT3 (HOMEOBOX FROM Arabidopsis thaliana 3), play crucial roles in regulation of leaf polarity and shade avoidance response [31, 33]. Two other HD-Zip II proteins, AtHB17 (Arabidopsis thaliana HOMEOBOX 17) and ABIG1 (ABA INSENSITIVE GROWTH 1), are involved in ABA-mediated stress response or growth inhibition [34, 35]. HD-Zip III proteins were reported to be involved in apical meristem formation, vascular development, organ polarity establishment, as well as auxin biosynthesis, transport and response [31, 36]. Rice LF1 (LATERAL FLORET 1) gene, encoding a class III HD-ZIP protein, induced the three-florets spikelet by directly regulating the expression of meristem maintenance gene OSH1 (ORYZA sativa HOMEOBOX 1) [37]. HD-Zip IV proteins play critical role in the specification of the protoderm, anthocyanin accumulation, and environmental responses [38]. For example, GhHOX3 (GOSSYPIUM HIRSUTUM HOMEOBOX 3) in this subfamily plays a central role in controlling cotton fibre elongation [39].
Sesame is an ancient and important oil crop, which is grown mainly in tropical and subtropical areas of the world. Sesame has been widely used in baked and confectionery products and edible oil due to its highly stable oil and high quantities of nutritious amino acids, minerals, vitamins, and lignans [40]. However, sesame production and quality is threatened by drought, salinity and other environmental stresses [41,42,43]. A series of TFs, such as ERF, WRKY, MYB, NAC and bZIP, have been genome-wide analyzed in sesame, and some stress-responsive TFs have been identified [44,45,46,47,48]. However, response to abiotic stress of HD-Zip genes was unclear in sesame. In this study, we systematically characterized the HD-Zip gene family in sesame, and analyzed their phylogenetic relationships, conserved motifs and gene structure, as well as expression patterns in different tissues and in response to abiotic stresses. Our results provide a perspective for further investigation of the functions of stress-responsive HD-ZIPs in sesame.
For the genome-wide identification of HD-Zip (homeodomain-leucine zipper) family genes in sesame, the Hidden Markov Model (HMM) profile of the homeodomain (HD) (PF00046) and the leucine zipper (LZ) domain (PF02183) were employed as queries to search against the Sinbase database ( -genomics.org/Sinbase) using the program HMM3.0. In addition, the known HD-Zip protein sequences from Arabidopsis were obtained from the TAIR database based on a previous study [2], and these sequences were also used as queries for searches in the Sinbase database. After removing redundant sequences, the SMART database was used to examine the presence of the HD and LZ domains for each identified candidate. As a result, a total of 45 HD-Zip genes were identified in sesame, and they were designated as SiHDZ1-SiHDZ45 according to their chromosomal locations on the sesame linkage groups (LGs). The identified sesame SiHDZ genes encoded proteins ranging from a minimum of 160 (SiHDZ37) to a maximum of 847 (SiHDZ22) amino acids in length. Detail information of SiHDZs such as gene locus ID, linkage group location, proteins length, and other corresponding information are shown in Additional file 2: Table S1.
The chromosomal localization of SiHDZ genes was determined to visualize their genomic position information (Fig. 1). Of the 45 SiHDZ genes, 44 genes were distributed unequally on 12 out of the 16 LGs, with the LG08 having the majority of SiHDZ genes (7), whereas the LG07 had only one gene. In addition, one SiHDZ gene (SiHDZ45) was mapped to the unanchored scaffold, and is not shown in Fig. 1. 781b155fdc
